Almost-sure growth rate of generalized random Fibonacci sequences
نویسندگان
چکیده
منابع مشابه
Almost-sure Growth Rate of Generalized Random Fibonacci sequences
We study the generalized random Fibonacci sequences defined by their first nonnegative terms and for n ≥ 1, Fn+2 = λFn+1 ± Fn (linear case) and F̃n+2 = |λF̃n+1 ± F̃n| (non-linear case), where each ± sign is independent and either + with probability p or − with probability 1 − p (0 < p ≤ 1). Our main result is that, when λ is of the form λk = 2 cos(π/k) for some integer k ≥ 3, the exponential growt...
متن کاملThe Asymptotic Growth Rate of Random Fibonacci Type Sequences Ii
In this paper, we use ergodic theory to compute the aysmptotic growth rate of a family of random Fibonacci type sequences. This extends the result in [2]. We also prove some Lochs-type results regarding the effectiveness of various number theoretic expansions.
متن کاملThe Asymptotic Growth Rate of Random Fibonacci Type Sequences
Estimating the growth rate of random Fibonacci-type sequences is both challenging and fascinating. In this paper, by using ergodic theory, we prove a new result in this area. Let a denote an infinite sequence of natural numbers {a1, a2, · · · } and define a random Fibonaccitype sequence by f−1 = 0, f0 = 1, a0 = 0, and fk = 2fk−1 + 2fk−2 for k ≥ 1. Then, for almost all such infinite sequences a,...
متن کاملGrowth and Decay of Random Fibonacci Sequences
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
سال: 2010
ISSN: 0246-0203
DOI: 10.1214/09-aihp312